IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i5p1623-1637.html
   My bibliography  Save this article

Potential Demand Forecasting for Steel Products in Spot Markets Using a Hybrid SARIMA‐LSSVM Approach

Author

Listed:
  • Junting Huang
  • Ying Meng
  • Min Xiao
  • Chang Liu
  • Yun Dong

Abstract

Compared to make‐to‐order production based on customer order, make‐to‐stock based on forecast can effectively reduce inventory level and production cost. However, due to high randomness of spot markets and many uncertainties in production environments, it is hard to forecast the products accurately. In this article, a hybrid model combining seasonal autoregressive integrated moving average (SARIMA) and least square support vector machines (LSSVMs) is proposed to forecast the potential demand of steel products. First, the SARIMA based on a multiobjective differential evolution with improved mutation strategies is developed to extract linear components of the potential demand. Then, a sparse strategy is designed to extract useful data and hence reduce computation complexity without loss of accuracy. Next, the LSSVMs combined with a single‐objective differential evolution are adopted to extract nonlinear components of the potential demand. Finally, the experimental results on a real‐world instance demonstrate the effectiveness of the proposed model and algorithm.

Suggested Citation

  • Junting Huang & Ying Meng & Min Xiao & Chang Liu & Yun Dong, 2025. "Potential Demand Forecasting for Steel Products in Spot Markets Using a Hybrid SARIMA‐LSSVM Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(5), pages 1623-1637, August.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:5:p:1623-1637
    DOI: 10.1002/for.3259
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3259
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    2. Hong, Taehoon & Koo, Choongwan & Jeong, Kwangbok, 2012. "A decision support model for reducing electric energy consumption in elementary school facilities," Applied Energy, Elsevier, vol. 95(C), pages 253-266.
    3. Holweg, Matthias & Bicheno, John, 2002. "Supply chain simulation - a tool for education, enhancement and endeavour," International Journal of Production Economics, Elsevier, vol. 78(2), pages 163-175, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    2. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    3. Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
    4. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    5. Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
    6. Arunachalam Narayanan & Brent B. Moritz, 2015. "Decision Making and Cognition in Multi-Echelon Supply Chains: An Experimental Study," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1216-1234, August.
    7. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    8. Yan Feng & Jean-François Audy & Mikael Rönnqvist & Sophie D’Amours, 2020. "An Educational Game with Dragons’ Den Experiences for Supply Chain Management Training," INFORMS Transactions on Education, INFORMS, vol. 21(1), pages 13-29, September.
    9. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    10. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    11. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    12. Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
    13. Zuzanna Karolak, 2021. "Energy prices forecasting using nonlinear univariate models," Bank i Kredyt, Narodowy Bank Polski, vol. 52(6), pages 577-598.
    14. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    15. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    16. Wang, Delu & Ma, Gang & Song, Xuefeng & Liu, Yun, 2017. "Energy price slump and policy response in the coal-chemical industry district: A case study of Ordos with a system dynamics model," Energy Policy, Elsevier, vol. 104(C), pages 325-339.
    17. Zhen-Yao Chen & R. J. Kuo, 2019. "Combining SOM and evolutionary computation algorithms for RBF neural network training," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1137-1154, March.
    18. Yue-Jun Zhang & Shu-Hui Li, 2019. "The impact of investor sentiment on crude oil market risks: evidence from the wavelet approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1357-1371, August.
    19. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    20. Yuanrong Wang & Yinsen Miao & Alexander CY Wong & Nikita P Granger & Christian Michler, 2023. "Domain-adapted Learning and Interpretability: DRL for Gas Trading," Papers 2301.08359, arXiv.org, revised Sep 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:5:p:1623-1637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.