IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i4p1501-1512.html
   My bibliography  Save this article

Forecasting Natural Gas Futures Prices Using Hybrid Machine Learning Models During Turbulent Market Conditions: The Case of the Russian–Ukraine Crisis

Author

Listed:
  • Pavan Kumar Nagula
  • Christos Alexakis

Abstract

Recently, many researchers have shown keen interest in natural gas price prediction using machine learning and hybrid architectures. Our research forecasts natural gas future prices with different hybrid machine learning models using over a hundred technical indicators. The hybrid deep cross‐network model outperformed the single‐stage deep cross‐network regression and hybrid support vector machine models with 33% and 46% lower mean absolute error and 22% and 1.2 times better directional hit rate during 11 months of turbulent market circumstances due to the Russia–Ukraine crisis. The hybrid deep cross‐network model is 14, 5, and 6 times more profitable than the hybrid support vector machine, the benchmark passive buy‐and‐hold strategy, and the single‐stage deep cross‐network regression models. The hybrid deep cross‐network model is resilient during low‐ and high‐volatility periods. Deep cross‐network algorithm technical indicator interactions are more statistically significant than support vector machine polynomial kernel interactions. Energy traders and policymakers can exploit our findings.

Suggested Citation

  • Pavan Kumar Nagula & Christos Alexakis, 2025. "Forecasting Natural Gas Futures Prices Using Hybrid Machine Learning Models During Turbulent Market Conditions: The Case of the Russian–Ukraine Crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1501-1512, July.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1501-1512
    DOI: 10.1002/for.3250
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3250
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Germán G. Creamer & Chihoon Lee, 2019. "A multivariate distance nonlinear causality test based on partial distance correlation: a machine learning application to energy futures," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1531-1542, September.
    2. Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
    3. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
    4. Pavan Kumar Nagula & Christos Alexakis, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Post-Print hal-03877093, HAL.
    5. Ambya Ambya & Toto Gunarto & Ernie Hendrawaty & Fajrin Satria Dwi Kesumah & Febryan Kusuma Wisnu, 2020. "Future Natural Gas Price Forecasting Model and Its Policy Implication," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 64-70.
    6. Shen Gao & Chenghan Hou & Bao H. Nguyen, 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," CAMA Working Papers 2020-30, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    8. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    9. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    10. Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    2. Bingzi Jin & Xiaojie Xu, 2025. "Machine learning price index forecasts of flat steel products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(1), pages 97-117, March.
    3. Hong, Yanran & Wang, Lu & Liang, Chao & Umar, Muhammad, 2022. "Impact of financial instability on international crude oil volatility: New sight from a regime-switching framework," Resources Policy, Elsevier, vol. 77(C).
    4. Xiaojie Xu & Yun Zhang, 2023. "Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(4), pages 563-582, December.
    5. Jonathan Berrisch & Florian Ziel, 2022. "Distributional modeling and forecasting of natural gas prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1065-1086, September.
    6. Pavan Kumar Nagula & Christos Alexakis, 2022. "A Novel Machine Learning Approach for Predicting the NIFTY50 Index in India," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 28(3), pages 155-170, November.
    7. Zhi Zhan Lua & Chee Kiat Seow & Raymond Ching Bon Chan & Yiyu Cai & Qi Cao, 2025. "Automated Bitcoin Trading dApp Using Price Prediction from a Deep Learning Model," Risks, MDPI, vol. 13(1), pages 1-25, January.
    8. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    9. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    10. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    11. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
    12. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    13. Amirali Nasouri, 2025. "The Impact of Geopolitical Risks on Equity Markets and Financial Stress: A Comparative Analysis of Emerging and Advanced Economies," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 30-41.
    14. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    15. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    16. Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1141-1152, November.
    17. Dilip Kumar & S. Maheswaran, 2013. "Return, Volatility and Risk Spillover from Oil Prices and the US Dollar Exchange Rate to the Indian Industrial Sectors," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 7(1), pages 61-91, February.
    18. Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
    19. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    20. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1501-1512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.