IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v6y1997i1p23-40.html
   My bibliography  Save this article

Ordinal Pairwise Partitioning (OPP) Approach to Neural Networks Training in Bond rating

Author

Listed:
  • YOUNG S. KWON
  • INGOO HAN
  • KUN CHANG LEE

Abstract

Statistical classification methods such as multivariate discriminant analysis have been widely used in bond rating classification in spite of the limitations of the methodology. Recently, neural networks have emerged as new methods for business classification. This approach to neural networks training is to categorize a new instance as one of the predefined bond classes. Such a conventional approach has limitations in dealing with the ordinal nature of bond rating. In addition, most of the prior studies have used sample data which are evenly divided among the classes. However, the natural population in real application is usually unevenly divided among the classes. Under such circumstances, it is hard to achieve good predictive performance. As the number of classes to be recognized increases, the predictive performance decreases. In this article, to increase the predictive performance in real‐world bond rating, we propose the ordinal pairwise partitioning (OPP) approach to backpropagation neural networks training. The main idea of the OPP approach is to partition the data set in the ordinal and pairwise manner according to the output classes. Then, each backpropagation neural networks model is trained by using each partitioned data set and is separately used for classification. Experimental results show that the predictive performance of the proposed OPP approach can be significantly enhanced, when compared to the conventional neural networks modeling approach as well as multivariate discriminant analysis. The OPP approach has two computation methods, and we discuss under which circumstances one method performs better than the other. We also show the generalizability of the OPP approach. © 1997 by John Wiley & Sons, Ltd.

Suggested Citation

  • Young S. Kwon & Ingoo Han & Kun Chang Lee, 1997. "Ordinal Pairwise Partitioning (OPP) Approach to Neural Networks Training in Bond rating," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 6(1), pages 23-40, March.
  • Handle: RePEc:wly:isacfm:v:6:y:1997:i:1:p:23-40
    DOI: 10.1002/(SICI)1099-1174(199703)6:13.0.CO;2-4
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1099-1174(199703)6:13.0.CO;2-4
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1099-1174(199703)6:13.0.CO;2-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James R. Coakley & Carol E. Brown, 2000. "Artificial neural networks in accounting and finance: modeling issues," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(2), pages 119-144, June.
    2. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    3. Daniel E. O'Leary, 2010. "Intelligent Systems in Accounting, Finance and Management: ISI journal and proceeding citations, and research issues from most‐cited papers," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 17(1), pages 41-58, January.
    4. Daniel E. O'Leary, 2009. "Downloads and citations in Intelligent Systems in Accounting, Finance and Management," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 21-31, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:6:y:1997:i:1:p:23-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.