IDEAS home Printed from https://ideas.repec.org/a/wly/intnem/v28y2018i4ne2021.html
   My bibliography  Save this article

Probe generation for active probing

Author

Listed:
  • A. Dusia
  • A. S. Sethi

Abstract

Active probing is a widely adopted approach for developing effective solutions for network monitoring and diagnosing. However, the use of probing techniques incurs costs in terms of additional network traffic. Furthermore, probing stations are required to be configured and maintained in the network for sending out probes. The set of probes used for fault detection and/or diagnosis (called the target probe set) is selected by a probe selection algorithm from a larger set called the candidate probe set. Most of the existing techniques for selecting the target probe set assume that the candidate probe set will preexist and the set is determined by the configured routing model in the network. In this paper, we address the problem of generating an expanded candidate probe set, which results in the selection of a more efficient target probe set. We propose the use of heuristics and network partitioning strategies for generating the candidate probe set. For evaluating our approach, we perform experiments to generate candidate probe sets for the networks of several types and sizes. The candidate probe sets are used by the existing probe selection algorithms for selecting target probe sets for fault detection and localization. Our results demonstrate that the target probe set selected from the candidate probe set generated using our approach has a reduced cost of monitoring the network.

Suggested Citation

  • A. Dusia & A. S. Sethi, 2018. "Probe generation for active probing," International Journal of Network Management, John Wiley & Sons, vol. 28(4), July.
  • Handle: RePEc:wly:intnem:v:28:y:2018:i:4:n:e2021
    DOI: 10.1002/nem.2021
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nem.2021
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nem.2021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:28:y:2018:i:4:n:e2021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.