IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v9y2019i5p965-978.html
   My bibliography  Save this article

Impact of fluid property shift and capillarity on the recovery mechanisms of CO2 injection in tight oil reservoirs

Author

Listed:
  • Shouya Wu
  • Zhaomin Li
  • Hemanta K. Sarma
  • Chao Zhang
  • Guangzhong Lv

Abstract

The phase equilibria with the confinement effect could shift in nano‐pores, which could have a great impact on the recovery mechanisms of CO2 injection in tight oil reservoirs; this has not been systematically studied. In this paper, the confinement effect with property shift and capillarity effect is introduced into the flash calculation of confined fluids. The Soave modification of the Redlich–Kwong equation of state is extended by the molecular‐wall collision parameter to describe the shifted pressure–volume–temperature properties of confined fluid, and the Young–Laplace equation is applied to evaluate the capillary pressure. This developed model could effectively be applied for phase equilibrium calculation in tight porous media because of the verification of experimental results. A binary mixture is investigated to study the different effect of capillary pressure and property shift on phase equilibria. Subsequently, a typical hydrocarbon fluid from Middle Bakken tight oil reservoirs is studied with CO2 injection. Results illustrate that the confinement effect could play an increasingly important part in the phase equilibrium state. The CO2 solubility and mass transfer driving force in tiny pores would be greater than those in large pores under the same conditions. The gas phase saturation would be smaller with the same compositions, which could extend the single‐phase region of fluid flow in porous media. Furthermore, bubble‐point pressure, the minimum miscible pressure of CO2/hydrocarbon, and the viscosity of tight oil dissolved with CO2 both decrease with the pore size, which has a good influence on tight oil recovery. In general, the confinement effect could effectively reinforce the recovery mechanisms of CO2 injection, which is conducive to the enhancement of tight oil recovery. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Shouya Wu & Zhaomin Li & Hemanta K. Sarma & Chao Zhang & Guangzhong Lv, 2019. "Impact of fluid property shift and capillarity on the recovery mechanisms of CO2 injection in tight oil reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(5), pages 965-978, October.
  • Handle: RePEc:wly:greenh:v:9:y:2019:i:5:p:965-978
    DOI: 10.1002/ghg.1913
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1913
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:9:y:2019:i:5:p:965-978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.