IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v9y2019i4p672-686.html
   My bibliography  Save this article

Understanding the CO2 sorption mechanisms of the MgO‐doped Na‐based sorbent at low temperatures

Author

Listed:
  • Zhikang Xu
  • Ye Wu
  • Tianyi Cai
  • Xiaoping Chen
  • Jiliang Ma
  • Daoyin Liu

Abstract

Using a solid Na‐based sorbent is one potential option to decrease CO2 emission in coal‐fired power plants, and the CO2 sorption reactivity of Na2CO3/γ‐Al2O3 sorbent was improved by mechanically doping MgO into Na2CO3/γ‐Al2O3 in our previous study while the mechanism was not clear. In this paper, the CO2 sorption/desorption mechanisms of the promising MgO‐doped Na‐based sorbent prepared by the two‐step incipient wetness impregnation method were studied using a fixed‐bed reactor, together with characterizations of X‐ray fluorescence, nitrogen adsorption apparatus, field emission scanning electron microscopy, X‐ray diffraction, and thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG‐FTIR). Also, the sorption behaviors were well described with Avrami's fractional‐order kinetic model. Results demonstrated that MgO not only dispersed on γ‐Al2O3 but entered γ‐Al2O3’s lattice, leading to the formation of Mg‐Al mixed oxides for CO2 sorption. In addition, a new phase Mg6Al2CO3(OH)16·4H2O was produced during the CO2 sorption process, which plays a crucial role in facilitating the conversion of Na2CO3 to NaHCO3. The CO2 sorption capacity of MgO‐doped Na‐based sorbents is presumably determined by the trade‐off between microstructure and active component dispersion. The knowledge gained about the promotion mechanism of MgO provides fundamental direction for the synthesis of Mg–Al mixed oxides, supported with the developed microstructure for CO2 sorption enhancement of Na‐based sorbents. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Zhikang Xu & Ye Wu & Tianyi Cai & Xiaoping Chen & Jiliang Ma & Daoyin Liu, 2019. "Understanding the CO2 sorption mechanisms of the MgO‐doped Na‐based sorbent at low temperatures," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(4), pages 672-686, August.
  • Handle: RePEc:wly:greenh:v:9:y:2019:i:4:p:672-686
    DOI: 10.1002/ghg.1896
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1896
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:9:y:2019:i:4:p:672-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.