IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i6ne70029.html

A Partially Varying‐Coefficient Model With Skew‐T Random Errors for Environmental Data Modeling

Author

Listed:
  • Christian Caamaño‐Carrillo
  • Germán Ibacache‐Pulgar
  • Bladimir Morales

Abstract

Partially varying‐coefficient models (PVCMs) are an important tool in the modeling of environmental, economic, biomedical and other data, which have a parametric and a nonparametric component in their formulation. In addition to presenting interaction of the unknown smooth functions, which makes the classic linear regression models more flexible, such that generalizes to generalized additive models (GAMs) and models with varying coefficients (VCMs), which usually have a Gaussian distribution. In many cases the data tend to be more complex in the sense that they can present high levels of skewness and kurtosis. This article extends the version Gaussian PVCMs, allowing errors to present asymmetry and heavy tails, increasing the flexibility of this type of models where the Gaussian version remains a special case within this extended version. Specifically, the EM algorithm was developed for the estimation of parameters and development of diagnostic analysis through local influence. To evaluate the efficiency of the estimation, a simulation study was carried out. Finally, the model was applied to the datasets of the National Air Quality Information System (SINCA) of Chile, specifically to data of the Metropolitan Region of Santiago, considering as the study variable the particulate matter PM2.5$$ {\mathrm{PM}}_{2.5} $$, for the importance it represents in environmental pollution and population health issues.

Suggested Citation

  • Christian Caamaño‐Carrillo & Germán Ibacache‐Pulgar & Bladimir Morales, 2025. "A Partially Varying‐Coefficient Model With Skew‐T Random Errors for Environmental Data Modeling," Environmetrics, John Wiley & Sons, Ltd., vol. 36(6), September.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:6:n:e70029
    DOI: 10.1002/env.70029
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70029
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong‐Tu Zhu & Sik‐Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    2. Nicole Jeldes & Germán Ibacache-Pulgar & Carolina Marchant & Javier Linkolk López-Gonzales, 2022. "Modeling Air Pollution Using Partially Varying Coefficient Models with Heavy Tails," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    3. Germán Ibacache-Pulgar & Gilberto Paula & Francisco Cysneiros, 2013. "Semiparametric additive models under symmetric distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 103-121, March.
    4. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2013. "The centred parameterization and related quantities of the skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 73-90.
    5. Victor Leiva & Carolina Marchant & Fabrizio Ruggeri & Helton Saulo, 2015. "A criterion for environmental assessment using Birnbaum–Saunders attribute control charts," Environmetrics, John Wiley & Sons, Ltd., vol. 26(7), pages 463-476, November.
    6. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    7. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
    8. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    2. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    3. Germán Ibacache-Pulgar & Cristian Villegas & Javier Linkolk López-Gonzales & Magaly Moraga, 2023. "Influence measures in nonparametric regression model with symmetric random errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 1-25, March.
    4. Carlos Eduardo M. Relvas & Gilberto A. Paula, 2016. "Partially linear models with first-order autoregressive symmetric errors," Statistical Papers, Springer, vol. 57(3), pages 795-825, September.
    5. Fernanda De Bastiani & Audrey Mariz de Aquino Cysneiros & Miguel Uribe-Opazo & Manuel Galea, 2015. "Influence diagnostics in elliptical spatial linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 322-340, June.
    6. Clécio S. Ferreira & Gilberto A. Paula, 2017. "Estimation and diagnostic for skew-normal partially linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 3033-3053, December.
    7. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    8. Chen, Qihao & Huang, Zhuo & Liang, Fang, 2023. "Measuring systemic risk with high-frequency data: A realized GARCH approach," Finance Research Letters, Elsevier, vol. 54(C).
    9. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
    10. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    11. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    12. Bellia, Mario & Calès, Ludovic, 2025. "Bank profitability and central bank digital currency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 99(C).
    13. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    14. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019. "Vulnerable Growth," American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
    15. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    16. Yongsheng Jiang & Dong Zhao & Andrew Sanderford & Jing Du, 2018. "Effects of Bank Lending on Urban Housing Prices for Sustainable Development: A Panel Analysis of Chinese Cities," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    17. Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," Documents de Travail de l'OFCE 2020-06, Observatoire Francais des Conjonctures Economiques (OFCE).
    18. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    19. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    20. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:6:n:e70029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.