IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i6ne70029.html
   My bibliography  Save this article

A Partially Varying‐Coefficient Model With Skew‐T Random Errors for Environmental Data Modeling

Author

Listed:
  • Christian Caamaño‐Carrillo
  • Germán Ibacache‐Pulgar
  • Bladimir Morales

Abstract

Partially varying‐coefficient models (PVCMs) are an important tool in the modeling of environmental, economic, biomedical and other data, which have a parametric and a nonparametric component in their formulation. In addition to presenting interaction of the unknown smooth functions, which makes the classic linear regression models more flexible, such that generalizes to generalized additive models (GAMs) and models with varying coefficients (VCMs), which usually have a Gaussian distribution. In many cases the data tend to be more complex in the sense that they can present high levels of skewness and kurtosis. This article extends the version Gaussian PVCMs, allowing errors to present asymmetry and heavy tails, increasing the flexibility of this type of models where the Gaussian version remains a special case within this extended version. Specifically, the EM algorithm was developed for the estimation of parameters and development of diagnostic analysis through local influence. To evaluate the efficiency of the estimation, a simulation study was carried out. Finally, the model was applied to the datasets of the National Air Quality Information System (SINCA) of Chile, specifically to data of the Metropolitan Region of Santiago, considering as the study variable the particulate matter PM2.5$$ {\mathrm{PM}}_{2.5} $$, for the importance it represents in environmental pollution and population health issues.

Suggested Citation

  • Christian Caamaño‐Carrillo & Germán Ibacache‐Pulgar & Bladimir Morales, 2025. "A Partially Varying‐Coefficient Model With Skew‐T Random Errors for Environmental Data Modeling," Environmetrics, John Wiley & Sons, Ltd., vol. 36(6), September.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:6:n:e70029
    DOI: 10.1002/env.70029
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70029
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:6:n:e70029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.