IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i5ne70024.html

Estimation of Impact Ranges for Functional Valued Predictors

Author

Listed:
  • Rory Samuels
  • Nimrod Carmon
  • Bledar Konomi
  • Jonathan Hobbs
  • Amy Braverman
  • Dean Young
  • Joon Jin Song

Abstract

Spectroscopy plays a crucial role in various scientific and industrial applications, enabling the analysis of complex materials and their interactions with incident radiation. Hyperspectral remote sensing, also known as imaging spectroscopy, is essential for numerous Earth science applications, spanning multiple disciplines, including ecology, geology, and cryosphere research. With the abundance of current orbital imaging spectrometers, and with space agencies and commercial companies set to expand their use in the next few years, developing methodologies that maximize the utility of these data is crucial. Identifying the wavelength ranges of diagnostic absorption features in spectra is essential for understanding the relationship between spectral data and responses of interest. In this paper, we propose a statistical approach that utilizes Functional Partial Least Squares (FPLS) to model the spectral data as smooth functions and study their impact on the response variable along sub‐intervals of the domain. To capture the localized relationships within specific sub‐intervals, termed impact ranges, we present a novel two‐stage estimation procedure to identify the midpoint and half‐length of the impact ranges. Additionally, we introduce an algorithm for iteratively applying the proposed two‐stage approach to estimate both the number and location of potential impact ranges. The proposed procedure is evaluated via Monte Carlo simulation and is applied to a real dataset of spectra to identify the location of the diagnostic absorption features for predicting calcium carbonate (CaCO3) content in soil. Our methodology accurately estimates the number and location of impact ranges, corresponding to absorption features in spectral data.

Suggested Citation

  • Rory Samuels & Nimrod Carmon & Bledar Konomi & Jonathan Hobbs & Amy Braverman & Dean Young & Joon Jin Song, 2025. "Estimation of Impact Ranges for Functional Valued Predictors," Environmetrics, John Wiley & Sons, Ltd., vol. 36(5), July.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:5:n:e70024
    DOI: 10.1002/env.70024
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70024
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Preda, C. & Saporta, G., 2005. "Clusterwise PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 99-108, April.
    2. Krämer, Nicole & Sugiyama, Masashi, 2011. "The Degrees of Freedom of Partial Least Squares Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 697-705.
    3. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    4. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    5. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    2. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
    3. Silvia Novo & Germán Aneiros & Philippe Vieu, 2021. "Sparse semiparametric regression when predictors are mixture of functional and high-dimensional variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 481-504, June.
    4. Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.
    5. Shuichi Kawano, 2021. "Sparse principal component regression via singular value decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 795-823, September.
    6. Manuel Febrero–Bande & Manuel Oviedo-de la Fuente & Mohammad Darbalaei & Morteza Amini, 2025. "Functional regression models with functional response: a new approach and a comparative study," Computational Statistics, Springer, vol. 40(5), pages 2701-2727, June.
    7. Zhou, Zhiyang, 2019. "Functional continuum regression," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 328-346.
    8. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    9. Christian Gayer & Alessandro Girardi & Andreas Reuter, 2016. "Replacing Judgment by Statistics: Constructing Consumer Confidence Indicators on the basis of Data-driven Techniques. The Case of the Euro Area," Working Papers LuissLab 16125, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    10. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    11. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    12. Ana M. Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    13. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Rejoinder on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 52-58, March.
    14. Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
    15. Ana Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    16. Jan J. J. Groen & Michael Nattinger, 2020. "Alternative Indicators for Chinese Economic Activity Using Sparse PLS Regression," Economic Policy Review, Federal Reserve Bank of New York, vol. 26(4), pages 39-68, October.
    17. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    18. Shang, Han Lin & Hyndman, Rob.J., 2011. "Nonparametric time series forecasting with dynamic updating," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
    19. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    20. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Rejoinder on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 52-58, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:5:n:e70024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.