IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i5ne70019.html

Stratified, Spatially Balanced Cluster Sampling for Cost‐Efficient Environmental Surveys

Author

Listed:
  • Juha Heikkinen
  • Helena M. Henttonen
  • Matti Katila
  • Sakari Tuominen

Abstract

Large‐scale environmental surveys relying on intensive fieldwork are expensive, but survey sampling methodology offers several options to improve their cost‐efficiency. For example, sites selected for field assessments can be arranged in clusters to reduce the time spent moving between the sites, and auxiliary data can be utilized to stratify the survey region and sample less important strata less densely. Geographically balanced and well‐spread sampling can yield further improvements since the target variables of environmental surveys tend to be spatially autocorrelated. A combination of these ideas was illustrated and evaluated in the context of a national forest inventory, and alternative methods of spatially balanced sampling were compared. The main findings were that (i) both the local pivotal method and the generalized random‐tessellation stratified design guaranteed a clearly better spatial regularity than systematic sampling when applied to fragmented regions resulting from stratification and (ii) they also ensured better global balance in unstratified sampling. In our case study, where stratification and sample allocation were based on high‐quality auxiliary data, stratified sampling was clearly more efficient than unstratified for the primary survey target parameter. However, our results also illustrate that highly nonproportional sample allocation can be dangerous in a multi‐purpose survey.

Suggested Citation

  • Juha Heikkinen & Helena M. Henttonen & Matti Katila & Sakari Tuominen, 2025. "Stratified, Spatially Balanced Cluster Sampling for Cost‐Efficient Environmental Surveys," Environmetrics, John Wiley & Sons, Ltd., vol. 36(5), July.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:5:n:e70019
    DOI: 10.1002/env.70019
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70019
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    2. Anton Grafström & Yves Tillé, 2013. "Doubly balanced spatial sampling with spreading and restitution of auxiliary totals," Environmetrics, John Wiley & Sons, Ltd., vol. 24(2), pages 120-131, March.
    3. Lorenzo Fattorini & Piermaria Corona & Gherardo Chirici & Maria Chiara Pagliarella, 2015. "Design‐based strategies for sampling spatial units from regular grids with applications to forest surveys, land use, and land cover estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 26(3), pages 216-228, May.
    4. Anton Grafström & Lina Schelin, 2014. "How to Select Representative Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 277-290, June.
    5. Audrey‐Anne Vallée & Bastien Ferland‐Raymond & Louis‐Paul Rivest & Yves Tillé, 2015. "Incorporating spatial and operational constraints in the sampling designs for forest inventories," Environmetrics, John Wiley & Sons, Ltd., vol. 26(8), pages 557-570, December.
    6. A. Grafström & S. Schnell & S. Saarela & S. P. Hubbell & R. Condit, 2017. "The continuous population approach to forest inventories and use of information in the design," Environmetrics, John Wiley & Sons, Ltd., vol. 28(8), December.
    7. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosa M. Di Biase & Marzia Marcheselli & Caterina Pisani, 2025. "Achieving spatial balance in environmental surveys under constant inclusion probabilities or inclusion density functions," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
    2. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    3. Wilmer Prentius, 2024. "Locally correlated Poisson sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    4. ak Tomasz B, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Statistics Poland, vol. 22(2), pages 143-154, June.
    5. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    6. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    7. Sara Franceschi & Rosa Maria Di Biase & Agnese Marcelli & Lorenzo Fattorini, 2022. "Some Empirical Results on Nearest-Neighbour Pseudo-populations for Resampling from Spatial Populations," Stats, MDPI, vol. 5(2), pages 1-16, April.
    8. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    9. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    10. Robertson, Blair & Price, Chris, 2024. "One point per cluster spatially balanced sampling," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    11. Maria Michela Dickson & Yves Tillé, 2016. "Ordered spatial sampling by means of the traveling salesman problem," Computational Statistics, Springer, vol. 31(4), pages 1359-1372, December.
    12. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    13. Matei Alina, 2021. "Book Review," Journal of Official Statistics, Sciendo, vol. 37(4), pages 1079-1081, December.
    14. G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.
    15. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    16. Chauvet, Guillaume & Ruiz-Gazen, Anne, 2017. "A comparison of pivotal sampling and unequal probability sampling with replacement," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 1-5.
    17. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    18. Lennart Bondesson, 2010. "Conditional and Restricted Pareto Sampling: Two New Methods for Unequal Probability Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 514-530, September.
    19. Tillé, Yves & Favre, Anne-Catherine, 2005. "Optimal allocation in balanced sampling," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 31-37, August.
    20. Yves Tillé, 2016. "The legacy of Corrado Gini in survey sampling and inequality theory," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 167-176, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:5:n:e70019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.