Author
Listed:
- Sihan Chen
- Sameh Abdulah
- Ying Sun
- Marc G. Genton
Abstract
Spatial statistical modeling involves processing an n×n$$ n\times n $$ symmetric positive definite covariance matrix, where n$$ n $$ denotes the number of locations. However, when n$$ n $$ is large, processing this covariance matrix using traditional methods becomes prohibitive. Thus, coupling parallel processing with approximation can be an elegant solution by relying on parallel solvers that deal with the matrix as a set of small tiles instead of the full structure. The approximation can also be performed at the tile level for better compression and faster execution. The tile low‐rank (TLR) approximation has recently been used to compress the covariance matrix, which mainly relies on ordering the matrix elements, which can impact the compression quality and the efficiency of the underlying solvers. This work investigates the accuracy and performance of location‐based ordering algorithms. We highlight the pros and cons of each ordering algorithm and give practitioners hints on carefully choosing the ordering algorithm for TLR approximation. We assess the quality of the compression and the accuracy of the statistical parameter estimates of the Matérn covariance function using TLR approximation under various ordering algorithms and settings of correlations through simulations on irregular grids. Our conclusions are supported by an application to daily soil moisture data in the Mississippi Basin area.
Suggested Citation
Sihan Chen & Sameh Abdulah & Ying Sun & Marc G. Genton, 2024.
"On the impact of spatial covariance matrix ordering on tile low‐rank estimation of Matérn parameters,"
Environmetrics, John Wiley & Sons, Ltd., vol. 35(6), September.
Handle:
RePEc:wly:envmet:v:35:y:2024:i:6:n:e2868
DOI: 10.1002/env.2868
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:6:n:e2868. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.