IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v30y2019i7ne2581.html
   My bibliography  Save this article

Nonstationary spatiotemporal Bayesian data fusion for pollutants in the near‐road environment

Author

Listed:
  • O. Gilani
  • V. J. Berrocal
  • S. A. Batterman

Abstract

Concentrations of near‐road air pollutants (NRAPs) have increased to very high levels in many urban centers around the world, particularly in developing countries. The adverse health effects of exposure to NRAPs are greater when the exposure occurs in the near‐road environment as compared to background levels of pollutant concentration. Therefore, there is increasing interest in monitoring pollutant concentrations in the near‐road environment. However, due to various practical limitations, monitoring pollutant concentrations near roadways and traffic sources is generally rather difficult and expensive. As an alternative, various deterministic computer models that provide predictions of pollutant concentrations in the near‐road environment, such as the research line‐source dispersion model (RLINE), have been developed. A common feature of these models is that their outputs typically display systematic biases and need to be calibrated in space and time using observed pollutant data. In this paper, we present a nonstationary Bayesian data fusion model that uses a novel data set on monitored pollutant concentrations (nitrogen oxides or NOx and fine particulate matter or PM2.5) in the near‐road environment and, combining it with the RLINE model output, provides predictions at unsampled locations. The model can also be used to evaluate whether including the RLINE model output leads to improved pollutant concentration predictions and whether the RLINE model output captures the spatial dependence structure of NRAP concentrations in the near‐road environment. A defining characteristic of the proposed model is that we model the nonstationarity in the pollutant concentrations by using a recently developed approach that includes covariates, postulated to be the driving force behind the nonstationary behavior, in the covariance function.

Suggested Citation

  • O. Gilani & V. J. Berrocal & S. A. Batterman, 2019. "Nonstationary spatiotemporal Bayesian data fusion for pollutants in the near‐road environment," Environmetrics, John Wiley & Sons, Ltd., vol. 30(7), November.
  • Handle: RePEc:wly:envmet:v:30:y:2019:i:7:n:e2581
    DOI: 10.1002/env.2581
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2581
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    2. Duncan Lee & Chris Robertson & Colin Ramsay & Kate Pyper, 2020. "Quantifying the impact of the modifiable areal unit problem when estimating the health effects of air pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:30:y:2019:i:7:n:e2581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.