IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v30y2019i2ne2508.html
   My bibliography  Save this article

Assessing models for estimation and methods for uncertainty quantification for spatial return levels

Author

Listed:
  • Yi Cao
  • Bo Li

Abstract

The return level estimation is an essential topic in studying spatial extremes for environmental data. Recently, various models for spatial extremes have emerged, which generally yield different estimates for return levels, given the same data. In the meantime, several approaches that obtain confidence intervals (CIs) for return levels have arisen, and the results from different approaches can also largely disagree. These pose natural questions for assessing different return level estimation methods and different CI derivation approaches. In this article, we compare an array of popular models for spatial extremes in return level estimation, as well as three approaches in CI derivation, through extensive Monte Carlo simulations. Our results show that in general, max‐stable models yield return level estimates with similar mean squared error, and the spatial generalized extreme value model also provides comparable estimates. The bootstrap method is recommended for max‐stable models to compute the CI, and the profile likelihood CI works well for spatial generalized extreme value. We also evaluate the methods for return level interpolation at unknown spatial locations and find that kriging of marginal return level estimates performs as well as max‐stable models.

Suggested Citation

  • Yi Cao & Bo Li, 2019. "Assessing models for estimation and methods for uncertainty quantification for spatial return levels," Environmetrics, John Wiley & Sons, Ltd., vol. 30(2), March.
  • Handle: RePEc:wly:envmet:v:30:y:2019:i:2:n:e2508
    DOI: 10.1002/env.2508
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2508
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Jalbert & Christian Genest & Luc Perreault, 2022. "Interpolation of Precipitation Extremes on a Large Domain Toward IDF Curve Construction at Unmonitored Locations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 461-486, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:30:y:2019:i:2:n:e2508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.