IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v17y2001i2p149-164.html
   My bibliography  Save this article

Convex upper and lower bounds for present value functions

Author

Listed:
  • D. Vyncke
  • M. Goovaerts
  • J. Dhaene

Abstract

In this paper we present an efficient methodology for approximating the distribution function of the net present value of a series of cash‐flows, when discounting is presented by a stochastic differential equation as in the Vasicek model and in the Ho–Lee model. Upper and lower bounds in convexity order are obtained. The high accuracy of the method is illustrated for cash‐flows for which no analytical results are available. Copyright © 2001 John Wiley & Sons, Ltd.

Suggested Citation

  • D. Vyncke & M. Goovaerts & J. Dhaene, 2001. "Convex upper and lower bounds for present value functions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(2), pages 149-164, April.
  • Handle: RePEc:wly:apsmbi:v:17:y:2001:i:2:p:149-164
    DOI: 10.1002/asmb.437
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.437
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koch, Inge & Schepper, Ann De, 2007. "An application of comonotonicity and convex ordering to present values with truncated stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 386-402, May.
    2. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    3. Alain Chateauneuf & Mina Mostoufi & David Vyncke, 2015. "Comonotonic Monte Carlo and its applications in option pricing and quantification of risk," Documents de travail du Centre d'Economie de la Sorbonne 15015, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    4. Vanduffel, S. & Dhaene, J. & Goovaerts, M. & Kaas, R., 2003. "The hurdle-race problem," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 405-413, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:17:y:2001:i:2:p:149-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.