IDEAS home Printed from
   My bibliography  Save this article

Assessments of Modal Split in Long-distance Passenger Transport


  • Chmelík Jakub

    () (Charles University in Prague, Faculty of Science, Department of Social Geography and Regional)


The goal of this paper is to present basic alternative assessments of the division of transport work (or also “modal split”) of main transport modes. For this, an example of selected long-distance connections between centres in Czechia, including an identification of major underlying factors, shall be exploited. The paper examines the competitiveness of rail transport in its relation to bus and individual automobile transport, and relations with a potential of rail transport are primarily selected. A logit model is applied within the selected set of relations. It is entered in particular by indicators of time (time of a ride, frequency of public transport lines) and finances (actual transport costs) through a financial expression of generalised costs. The purpose of the paper is to verify the selected procedure on the relations transport modes of which are similar, and to highlight the alternatives of a comprehensive assessment of the modal split of main transport modes in Czechia. In the conclusion, the gained results are used to outline further alternative prospects of the topic under observation.

Suggested Citation

  • Chmelík Jakub, 2015. "Assessments of Modal Split in Long-distance Passenger Transport," Review of Economic Perspectives, De Gruyter Open, vol. 15(1), pages 49-69, March.
  • Handle: RePEc:vrs:reoecp:v:15:y:2015:i:1:p:49-69:n:5

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. S. Boragan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 319-340, March.
    2. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    3. Ansgar Belke & Jens Klose, 2011. "Does the ECB Rely on a Taylor Rule During the Financial Crisis? Comparing Ex-post and Real Time Data with Real Time Forecasts," Economic Analysis and Policy, Elsevier, vol. 41(2), pages 147-171, September.
    4. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    5. Gerberding, Christina & Seitz, Franz & Worms, Andreas, 2005. "How the Bundesbank really conducted monetary policy," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 277-292, December.
    6. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    7. Rafael Cusinato & André Minella & Sabino Silva Pôrto Júnior, 2013. "Output gap in Brazil: a real-time data analysis," Empirical Economics, Springer, vol. 44(3), pages 1113-1127, June.
    8. Horváth, Roman, 2009. "The time-varying policy neutral rate in real-time: A predictor for future inflation?," Economic Modelling, Elsevier, vol. 26(1), pages 71-81, January.
    9. Jan Capek, 2014. "Historical Analysis of Monetary Policy Reaction Functions: Do Real-Time Data Matter?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(6), pages 457-475, December.
    10. Marek RUSNAK, 2013. "Revisions to the Czech National Accounts: Properties and Predictability," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(3), pages 244-261, July.
    11. Casares, Miguel & Vázquez, Jesús, 2016. "Data Revisions In The Estimation Of Dsge Models," Macroeconomic Dynamics, Cambridge University Press, vol. 20(07), pages 1683-1716, October.
    12. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
    13. Marcela Meirelles Aurelio, 2005. "Do we really know how inflation targeters set interest rates?," Research Working Paper RWP 05-02, Federal Reserve Bank of Kansas City.
    14. Ince, Onur & Papell, David H., 2013. "The (un)reliability of real-time output gap estimates with revised data," Economic Modelling, Elsevier, vol. 33(C), pages 713-721.
    15. Gerdesmeier, Dieter & Roffia, Barbara, 2005. "The relevance of real-time data in estimating reaction functions for the euro area," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 293-307, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:reoecp:v:15:y:2015:i:1:p:49-69:n:5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.