Author
Listed:
- Mark Humphries
- Lianne C. Leddy
- Quinn Downton
- Meredith Legace
- John McConnell
- Isabella Murray
- Elizabeth Spence
Abstract
This study demonstrates that Large Language Models (LLMs) can transcribe historical handwritten documents with significantly higher accuracy than specialized Handwritten Text Recognition (HTR) software, while being faster and more cost-effective. We introduce an open-source software tool called Transcription Pearl that leverages these capabilities to automatically transcribe and correct batches of handwritten documents using commercially available multimodal LLMs from OpenAI, Anthropic, and Google. In tests on a diverse corpus of 18th/19th century English language handwritten documents, LLMs achieved Character Error Rates (CER) of 5.7 to 7% and Word Error Rates (WER) of 8.9 to 15.9%, improvements of 14% and 32% respectively over specialized state-of-the-art HTR software like Transkribus. Most significantly, when LLMs were then used to correct those transcriptions as well as texts generated by conventional HTR software, they achieved near-human levels of accuracy, that is CERs as low as 1.8% and WERs of 3.5%. The LLMs also completed these tasks 50 times faster and at approximately 1/50th the cost of proprietary HTR programs. These results demonstrate that when LLMs are incorporated into software tools like Transcription Pearl, they provide an accessible, fast, and highly accurate method for mass transcription of historical handwritten documents, significantly streamlining the digitization process.
Suggested Citation
Mark Humphries & Lianne C. Leddy & Quinn Downton & Meredith Legace & John McConnell & Isabella Murray & Elizabeth Spence, 2025.
"Unlocking the archives: Using large language models to transcribe handwritten historical documents,"
Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 58(3), pages 175-193, July.
Handle:
RePEc:taf:vhimxx:v:58:y:2025:i:3:p:175-193
DOI: 10.1080/01615440.2025.2500309
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:vhimxx:v:58:y:2025:i:3:p:175-193. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/vhim20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.