IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v49y2017i1p45-57.html
   My bibliography  Save this article

Modeling and change detection of dynamic network data by a network state space model

Author

Listed:
  • Na Zou
  • Jing Li

Abstract

Dynamic network data are often encountered in social, biological, and engineering domains. There are two types of variability in dynamic network data: variability of natural evolution and variability due to assignable causes. The latter is the “change” referred to in this article. Accurate and timely change detection from dynamic network data is important. However, it has been infrequently studied, with most of the existing research having focused on community detection, prediction, and visualization. Change detection is a classic research area in Statistical Process Control (SPC), and various approaches have been developed for dynamic data in the form of univariate or multivariate time series but not in the form of networks. We propose a Network State Space Model (NSSM) to characterize the natural evolution of dynamic networks. For tractable parameter estimation of the NSSM, we develop an Expectation Propagation algorithm to produce an approximation for the observation equation of the NSSM and then use Expectation–Maximization integrated with Bayesian Optimal Smoothing to estimate the parameters. For change detection, we further propose a Singular Value Decomposition (SVD)-based method that integrates the NSSM with SPC. A real-world application on Enron dynamic email networks is presented, in which our method successfully detects two known changes.

Suggested Citation

  • Na Zou & Jing Li, 2017. "Modeling and change detection of dynamic network data by a network state space model," IISE Transactions, Taylor & Francis Journals, vol. 49(1), pages 45-57, January.
  • Handle: RePEc:taf:uiiexx:v:49:y:2017:i:1:p:45-57
    DOI: 10.1080/0740817X.2016.1198065
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2016.1198065
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2016.1198065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:49:y:2017:i:1:p:45-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.