IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v27y2023i4p689-709.html
   My bibliography  Save this article

Computing and Estimating Distortion Risk Measures: How to Handle Analytically Intractable Cases?

Author

Listed:
  • Sahadeb Upretee
  • Vytaras Brazauskas

Abstract

In insurance data analytics and actuarial practice, distortion risk measures are used to capture the riskiness of the distribution tail. Point and interval estimates of the risk measures are then employed to price extreme events, to develop reserves, to design risk transfer strategies, and to allocate capital. Often the computation of those estimates relies on Monte Carlo simulations, which, depending upon the complexity of the problem, can be very costly in terms of required expertise and computational time. In this article, we study analytic and numerical evaluation of distortion risk measures, with the expectation that the proposed formulas or inequalities will reduce the computational burden. Specifically, we consider several distortion risk measures––value-at-risk (VaR), conditional tail expectation (cte), proportional hazards transform (pht), Wang transform (wt), and Gini shortfall (gs)––and evaluate them when the loss severity variable follows shifted exponential, Pareto I, and shifted lognormal distributions (all chosen to have the same support), which exhibit common distributional shapes of insurance losses. For these choices of risk measures and loss models, only the VaR and cte measures always possess explicit formulas. For pht, wt, and gs, there are cases when the analytic treatment of the measure is not feasible. In the latter situations, conditions under which the measure is finite are studied rigorously. In particular, we prove several theorems that specify two-sided bounds for the analytically intractable cases. The quality of the bounds is further investigated by comparing them with numerically evaluated risk measures. Finally, a simulation study involving application of those bounds in statistical estimation of the risk measures is also provided.

Suggested Citation

  • Sahadeb Upretee & Vytaras Brazauskas, 2023. "Computing and Estimating Distortion Risk Measures: How to Handle Analytically Intractable Cases?," North American Actuarial Journal, Taylor & Francis Journals, vol. 27(4), pages 689-709, October.
  • Handle: RePEc:taf:uaajxx:v:27:y:2023:i:4:p:689-709
    DOI: 10.1080/10920277.2022.2137201
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2022.2137201
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2022.2137201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:27:y:2023:i:4:p:689-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.