IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v51y2020i14p2733-2745.html
   My bibliography  Save this article

Discrete-time multivariable PID controller design with application to an overhead crane

Author

Listed:
  • Huiru Guo
  • Zhi-Yong Feng
  • Jinhua She

Abstract

This paper considers the problems of designing multivariable proportional-integral-derivative (PID) controllers for discrete-time systems with D-stability and/or $H_{\infty } $H∞ performance constraints. First, the PID control problem is cast into a static output feedback (SOF) control problem, and linear matrix inequality (LMI) conditions are presented. Then, a cone complementarity linearisation (CCL) method is used to solve the SOF-stabilisation problem, and a coordinate transformation matrix (CTM) optimisation approach is extended to solve the optimal $H_{\infty } $H∞ SOF control problem. Finally, a numerical example is provided to show the effectiveness and advantage of the CTM optimisation approach, and application to the anti-sway and positioning control of an overhead crane demonstrates the validity of the approach.

Suggested Citation

  • Huiru Guo & Zhi-Yong Feng & Jinhua She, 2020. "Discrete-time multivariable PID controller design with application to an overhead crane," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(14), pages 2733-2745, October.
  • Handle: RePEc:taf:tsysxx:v:51:y:2020:i:14:p:2733-2745
    DOI: 10.1080/00207721.2020.1801881
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2020.1801881
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2020.1801881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:51:y:2020:i:14:p:2733-2745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.