IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i8p1566-1576.html
   My bibliography  Save this article

Dissipative control for linear systems by static output feedback

Author

Listed:
  • Zhiguang Feng
  • James Lam
  • Zhan Shu

Abstract

In this article, the problem of static output-feedback dissipative control is investigated for linear continuous-time system based on an augmented system approach. A necessary and sufficient condition for stability and strict (Q,S,R)-dissipativity of the closed-loop system is established in terms of a matrix inequality with free parametrisation matrix. An equivalent characterisation with some slack matrices for numerical solvability is then proposed. Based on this, a necessary and sufficient condition for the existence of a desired controller is given, and a corresponding iterative algorithm is developed to solve the condition. The effectiveness of results developed in this article is demonstrated by some numerical examples.

Suggested Citation

  • Zhiguang Feng & James Lam & Zhan Shu, 2013. "Dissipative control for linear systems by static output feedback," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(8), pages 1566-1576.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:8:p:1566-1576
    DOI: 10.1080/00207721.2012.659698
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2012.659698
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2012.659698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakthivel, R. & Saravanakumar, T. & Kaviarasan, B. & Marshal Anthoni, S., 2016. "Dissipativity based repetitive control for switched stochastic dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 340-353.
    2. Nagamani, G. & Ramasamy, S., 2016. "Stochastic dissipativity and passivity analysis for discrete-time neural networks with probabilistic time-varying delays in the leakage term," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 237-257.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:8:p:1566-1576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.