Author
Listed:
- Zhuoran Dong
- Tao Ren
- Fang Qi
- Jiacheng Weng
- Danyu Bai
- Jie Yang
- Chin-Chia Wu
Abstract
Wafer processing is the most expensive, time-consuming, and complex stage in semiconductor manufacturing. It varies significantly based on orders of customers (agents). Optimising the wafer processing flow in a multi-agent scenario can meet customised requirements, speed up delivery, and reduce costs. This work models wafer processing as a multi-agent job shop scheduling problem (MAJSP) with release dates. The objective is to minimise the total weighted makespan of agents. To address both dynamic and static scheduling scenarios in the MAJSP context, two deep reinforcement learning-based (DRL) methods are proposed. In a dynamic scheduling scenario, the statuses of orders and production resources can change at any moment. A DRL method called Graph Transformer Network (GTN) is proposed to rapidly generate high-quality solutions. In a static scheduling scenario, the production plan can be formulated based on predetermined demand and resource conditions. A novel hybrid method (GTN-DABC) that combines GTN with the discrete artificial bee colony algorithm (DABC) is proposed to provide high-quality production plans for manufacturers within an acceptable computation time. Experimental results demonstrate that the proposed GTN outperforms existing heuristics, and the well-designed GTN-DABC is more competitive than other meta-heuristics.
Suggested Citation
Zhuoran Dong & Tao Ren & Fang Qi & Jiacheng Weng & Danyu Bai & Jie Yang & Chin-Chia Wu, 2025.
"A reinforcement learning-based approach for solving multi-agent job shop scheduling problem,"
International Journal of Production Research, Taylor & Francis Journals, vol. 63(10), pages 3512-3537, May.
Handle:
RePEc:taf:tprsxx:v:63:y:2025:i:10:p:3512-3537
DOI: 10.1080/00207543.2024.2423807
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:63:y:2025:i:10:p:3512-3537. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.