IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i8p2426-2449.html
   My bibliography  Save this article

Fault detection and recognition of multivariate process based on feature learning of one-dimensional convolutional neural network and stacked denoised autoencoder

Author

Listed:
  • Chengyi Zhang
  • Jianbo Yu
  • Shijin Wang

Abstract

Multivariate process pattern recognition (MPPR) is essential towards continuous quality control task. A challenging problem is to extract effective features from complex process signals with high-dimensional and nonlinear characteristics. This affects effectiveness of various classifiers in process fault detection and diagnosis significantly. In this paper, we propose a hybrid deep learning model (i.e. 1-DCNN + SDAE) that integrates one-dimensional convolutional neural network (1-DCNN) and stacked denoising auto-encoders (SDAE) to extract high level features from complex process signals. In comparison with two-dimensional images, one-dimensional process signals allow not only to extract spatial features, but also reduce calculation cost. 1-DCNN is capable of extracting representative features from one-dimensional process signals and then improves MPPR performance of classifiers significantly. SDAE is embedded after fully connected layer of 1-DCNN for further dimension reduction and feature extraction. 1-DCNN + SDAE preserves advantages of 1-DCNN and SDAE for feature learning from high-dimensional data. This makes it be flexible for those process fault detection and diagnosis tasks. The effectiveness of 1-DCNN + SDAE is validated on a complex numerical process, two process benchmarks i.e. Tennessee Eastman process (TEP) and Fed-batch fermentation penicillin process (FBFP), and a real-life manufacturing case of industrial conveyor belt. The experimental results illustrate effectiveness of the proposed method for feature learning and fault diagnosis on multivariate manufacturing processes. The comparison between 1-DCNN + SDAE and other typical DNNs on these processes, indicates the effectiveness of the proposed method for process fault detection and diagnosis. This study will provide the guidance for development of hybrid deep learning-based multivariate control models.

Suggested Citation

  • Chengyi Zhang & Jianbo Yu & Shijin Wang, 2021. "Fault detection and recognition of multivariate process based on feature learning of one-dimensional convolutional neural network and stacked denoised autoencoder," International Journal of Production Research, Taylor & Francis Journals, vol. 59(8), pages 2426-2449, April.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:8:p:2426-2449
    DOI: 10.1080/00207543.2020.1733701
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1733701
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1733701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:8:p:2426-2449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.