IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i19p5809-5825.html
   My bibliography  Save this article

An exact algorithm for the mixed-model level scheduling problem

Author

Listed:
  • Jordi Pereira
  • Mariona Vilà

Abstract

The Monden Problem, also known as the Output Rate Variation Problem, is one of the original formulations for mixed-model assembly line-level scheduling problems in a just-in-time system. In this paper, we develop a new branch-and-bound procedure for the problem that uses several new and previously proposed lower and upper bounds. The algorithm also includes several dominance rules that leverage the symmetry in the problem as well as a new labelling procedure that avoids repeated exploration of previously examined partial solutions. The branching strategy exploits the capabilities of current multiprocessor computers by exploring the search tree in a parallel fashion. The algorithm has been tested on several sets of instances from the literature and is able to optimally solve problems that are double the size of those addressed by other procedures previously reported in the literature.

Suggested Citation

  • Jordi Pereira & Mariona Vilà, 2015. "An exact algorithm for the mixed-model level scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 53(19), pages 5809-5825, October.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:19:p:5809-5825
    DOI: 10.1080/00207543.2015.1005771
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1005771
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1005771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Kreiter & Ulrich Pferschy, 2020. "Integer programming models versus advanced planning business software for a multi-level mixed-model assembly line problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1141-1177, September.
    2. F. Tanhaie & M. Rabbani & N. Manavizadeh, 2020. "Applying available-to-promise (ATP) concept in mixed-model assembly line sequencing problems in a Make-To-Order (MTO) environment: problem extension, model formulation and Lagrangian relaxation algori," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 320-346, June.
    3. Simon Emde & Lukas Polten, 2019. "Sequencing assembly lines to facilitate synchronized just-in-time part supply," Journal of Scheduling, Springer, vol. 22(6), pages 607-621, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:19:p:5809-5825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.