IDEAS home Printed from https://ideas.repec.org/a/taf/tjsmxx/v6y2012i4p279-293.html
   My bibliography  Save this article

Supports for transparent object-migration in PDES systems

Author

Listed:
  • S Peluso
  • D Didona
  • F Quaglia

Abstract

It is well known that Parallel Discrete Event Simulation systems may suffer, in terms of delivered performance, from imbalance of the computational load. In case of conservative synchronization we may experience CPU under-utilization and/or excessive communication overhead. On the other hand, for the optimistic paradigm we may even have rollback thrashing effects, with a consequent reduction of the percentage of productive (ie not rolled back) work carried out. This paper presents the design of a global memory management architecture supporting application-transparent migration of simulation objects whose state is scattered across dynamically allocated memory chunks. Our approach is based on a non-intrusive background protocol that provides each instance of the simulation kernel with information on the current mapping of the virtual address space of all the other instances. Dynamic memory requests by the application layer are then locally mapped onto virtual-address ranges that maximize the likelihood of being portable onto the address space of a remote kernel instance. In this way, independently of the load-balancing trigger (or policy), we maximize the likelihood that a desirable migration across a specific couple of kernels can actually take place due to compliance of the corresponding source/destination address spaces. We have integrated the global memory manager within the ROme OpTimistic Simulator (ROOT-Sim), namely a run-time environment based on the optimistic synchronization paradigm which automatically and transparently parallelizes the execution of event-handler-based simulation programs conforming to ANSI-C. Further, we provide a contribution in the direction of widening load-balancing schemes for optimistic simulation systems by defining migration triggers and selection policies for the objects to be migrated on the basis of memory usage patterns. An experimental assessment of the architecture and of memory-oriented load balancing is also provided.

Suggested Citation

  • S Peluso & D Didona & F Quaglia, 2012. "Supports for transparent object-migration in PDES systems," Journal of Simulation, Taylor & Francis Journals, vol. 6(4), pages 279-293, November.
  • Handle: RePEc:taf:tjsmxx:v:6:y:2012:i:4:p:279-293
    DOI: 10.1057/jos.2012.13
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1057/jos.2012.13
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jos.2012.13?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjsmxx:v:6:y:2012:i:4:p:279-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjsm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.