IDEAS home Printed from https://ideas.repec.org/a/taf/tjrtxx/v8y2020i1p1-26.html
   My bibliography  Save this article

Rail wear and remaining life prediction using meta-models

Author

Listed:
  • Annemieke Meghoe
  • Richard Loendersloot
  • Tiedo Tinga

Abstract

The study presented in this paper proposes a method to estimate the Remaining Useful Life (RUL) of railway tracks determined by wear and taking into account various track geometry and usage profile parameters. The relation between these parameters and rail wear is established by means of meta-models derived from physical models. These models are obtained with regression analysis where the best fit is found from a relatively large set of numerical experiments for various scenarios. The specific parameter settings for these scenarios are obtained by using the Latin Hypercube Sampling (LHS) method. Furthermore, for the rail profile, which is one of the input parameters for the meta-model, it is shown that the evolution due to wear in moderate curves can be characterized by only one parameter. The findings in this work including are valuable for Infrastructure Managers (IMs) and can easily be implemented in maintenance decision support tools.

Suggested Citation

  • Annemieke Meghoe & Richard Loendersloot & Tiedo Tinga, 2020. "Rail wear and remaining life prediction using meta-models," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 8(1), pages 1-26, January.
  • Handle: RePEc:taf:tjrtxx:v:8:y:2020:i:1:p:1-26
    DOI: 10.1080/23248378.2019.1621780
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23248378.2019.1621780
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23248378.2019.1621780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Antonio Biancardo & Francesco Avella & Ernesto Di Lisa & Xinqiang Chen & Francesco Abbondati & Gianluca Dell’Acqua, 2021. "Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel," Sustainability, MDPI, vol. 13(19), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjrtxx:v:8:y:2020:i:1:p:1-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjrt20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.