IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v22y2022i6p1051-1069.html
   My bibliography  Save this article

A reinforcement learning approach to optimal execution

Author

Listed:
  • Ciamac C. Moallemi
  • Muye Wang

Abstract

We consider the problem of execution timing in optimal execution. Specifically, we formulate the optimal execution problem of an infinitesimal order as an optimal stopping problem. By using a novel neural network architecture, we develop two versions of data-driven approaches for this problem, one based on supervised learning, and the other based on reinforcement learning. Temporal difference learning can be applied and extends these two methods to many variants. Through numerical experiments on historical market data, we demonstrate significant cost reduction of these methods. Insights from numerical experiments reveals various tradeoffs in the use of temporal difference learning, including convergence rates, data efficiency, and a tradeoff between bias and variance.

Suggested Citation

  • Ciamac C. Moallemi & Muye Wang, 2022. "A reinforcement learning approach to optimal execution," Quantitative Finance, Taylor & Francis Journals, vol. 22(6), pages 1051-1069, June.
  • Handle: RePEc:taf:quantf:v:22:y:2022:i:6:p:1051-1069
    DOI: 10.1080/14697688.2022.2039403
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2022.2039403
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2022.2039403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianfeng Jiao & Zizhong Li & Chang Xu & Yang Liu & Weiqing Liu & Jiang Bian, 2023. "Microstructure-Empowered Stock Factor Extraction and Utilization," Papers 2308.08135, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:22:y:2022:i:6:p:1051-1069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.