IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i3p395-417.html
   My bibliography  Save this article

A Bayesian encompassing test using combined value-at-risk estimates

Author

Listed:
  • Georgios Tsiotas

Abstract

The Value at Risk (VaR) is a risk measure that is widely used by financial institutions in allocating risk. VaR forecast estimation involves the conditional evaluation of quantiles based on the currently available information. Recent advances in VaR evaluation incorporate conditional variance into the quantile estimation, yielding the Conditional Autoregressive VaR (CAViaR) models. However, the large number of alternative CAViaR models raises the issue of identifying the optimal quantile predictor. To resolve this uncertainty, we propose a Bayesian encompassing test that evaluates various CAViaR models predictions against a combined CAViaR model based on the encompassing principle. This test provides a basis for forecasting combined conditional VaR estimates when there are evidences against the encompassing principle. We illustrate this test using simulated and financial daily return data series. The results demonstrate that there are evidences for using combined conditional VaR estimates when forecasting quantile risk.

Suggested Citation

  • Georgios Tsiotas, 2018. "A Bayesian encompassing test using combined value-at-risk estimates," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 395-417, March.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:3:p:395-417
    DOI: 10.1080/14697688.2017.1330551
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2017.1330551
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2017.1330551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Wei, 2023. "The impact of oil and natural gas prices on overnight risk in exchange rates based on the MVMQ-CAViaR models," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 616-625.
    2. Dimitriadis, Timo & Liu, Xiaochun & Schnaitmann, Julie, 2020. "Encompassing tests for value at risk and expected shortfall multi-step forecasts based on inference on the boundary," Hohenheim Discussion Papers in Business, Economics and Social Sciences 11-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    3. Georgios Tsiotas, 2020. "On the use of power transformations in CAViaR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 296-312, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:3:p:395-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.