Author
Listed:
- Steve Y. Yang
- Sheung Yin Kevin Mo
- Anqi Liu
Abstract
Twitter, one of the several major social media platforms, has been identified as an influential factor for financial markets by multiple academic and professional publications in recent years. The motivation of this study hinges on the growing popularity of the use of Twitter and the increasing prevalence of its influence among the financial investment community. This paper presents empirical evidence of the existence of a financial community on Twitter in which users' interests align with financial market-related topics. We establish a methodology to identify relevant Twitter users who form the financial community, and we also present the empirical findings of network characteristics of the financial community. We observe that this financial community behaves similarly to a small-world network, and we further identify groups of critical nodes and analyse their influence within the financial community based on several network centrality measures. Using a novel sentiment analysis algorithm, we construct a weighted sentiment measure using tweet messages from these critical nodes, and we discover that it is significantly correlated with the returns of the major financial market indices. By forming a financial community within the Twitter universe, we argue that the influential Twitter users within the financial community provide a proxy for the relationship between social sentiment and financial market movement. Hence, we conclude that the weighted sentiment constructed from these critical nodes within the financial community provides a more robust predictor of financial markets than the general social sentiment.
Suggested Citation
Steve Y. Yang & Sheung Yin Kevin Mo & Anqi Liu, 2015.
"Twitter financial community sentiment and its predictive relationship to stock market movement,"
Quantitative Finance, Taylor & Francis Journals, vol. 15(10), pages 1637-1656, October.
Handle:
RePEc:taf:quantf:v:15:y:2015:i:10:p:1637-1656
DOI: 10.1080/14697688.2015.1071078
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:10:p:1637-1656. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.