IDEAS home Printed from
   My bibliography  Save this article

Fast simulations in credit risk


  • Halis Sak
  • Wolfgang Hörmann


We consider the problem of simulating tail loss probabilities and expected losses conditioned on exceeding a large threshold (expected shortfall) for credit portfolios. Our new idea, called the geometric shortcut, allows an efficient simulation for the case of independent obligors. It is even possible to show that, when the average default probability tends to zero, its asymptotic efficiency is higher than that of the naive algorithm. The geometric shortcut is also useful for models with dependent obligors and can be used for dependence structures modeled with arbitrary copulae. The paper contains the details for simulating the risk of the normal copula credit risk model by combining outer importance sampling with the geometric shortcut. Numerical results show that the new method is efficient in assessing tail loss probabilities and expected shortfall for credit risk portfolios. The new method outperforms all known methods, especially for credit portfolios consisting of weakly correlated obligors and for evaluating the tail loss probabilities at many thresholds in a single simulation run.

Suggested Citation

  • Halis Sak & Wolfgang Hörmann, 2012. "Fast simulations in credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1557-1569, October.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:10:p:1557-1569
    DOI: 10.1080/14697688.2011.564199

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-016-2241-1 is not listed on IDEAS
    2. Ferrer, Alex & Casals, José & Sotoca, Sonia, 2016. "Efficient estimation of unconditional capital by Monte Carlo simulation," Finance Research Letters, Elsevier, vol. 16(C), pages 75-84.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:10:p:1557-1569. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.