IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Non-parametric partial importance sampling for financial derivative pricing

Listed author(s):
  • Jan Neddermeyer
Registered author(s):

    Importance sampling is a promising variance reduction technique for Monte Carlo simulation-based derivative pricing. Existing importance sampling methods are based on a parametric choice of the proposal. This article proposes an algorithm that estimates the optimal proposal non-parametrically using a multivariate frequency polygon estimator. In contrast to parametric methods, non-parametric estimation allows for close approximation of the optimal proposal. Standard non-parametric importance sampling is inefficient for high-dimensional problems. We solve this issue by applying the procedure to a low-dimensional subspace, which is identified through principal component analysis and the concept of the effective dimension. The mean square error properties of the algorithm are investigated and its asymptotic optimality is shown. Quasi-Monte Carlo is used for further improvement of the method. It is easy to implement, particularly it does not require any analytical computation, and it is computationally very efficient. We demonstrate through path-dependent and multi-asset option pricing problems that the algorithm leads to significant efficiency gains compared with other algorithms in the literature.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

    Volume (Year): 11 (2011)
    Issue (Month): 8 ()
    Pages: 1193-1206

    in new window

    Handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1193-1206
    DOI: 10.1080/14697680903496485
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1193-1206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.