IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i8p1177-1191.html
   My bibliography  Save this article

On the acceleration of explicit finite difference methods for option pricing

Author

Listed:
  • Stephen O'Sullivan
  • Conall O'Sullivan

Abstract

Implicit finite difference methods are conventionally preferred over their explicit counterparts for the numerical valuation of options. In large part the reason for this is a severe stability constraint known as the Courant-Friedrichs-Lewy (CFL) condition which limits the latter class's efficiency. Implicit methods, however, are difficult to implement for all but the most simple of pricing models, whereas explicit techniques are easily adapted to complex problems. For the first time in a financial context, we present an acceleration technique, applicable to explicit finite difference schemes describing diffusive processes with symmetric evolution operators, called Super-Time-Stepping. We show that this method can be implemented as part of a more general approach for non-symmetric operators. Formal stability is thereby deduced for the exemplar cases of European and American put options priced under the Black-Scholes equation. Furthermore, we introduce a novel approach to describing the efficiencies of finite difference schemes as semi-empirical power laws relating the minimal real time required to carry out the numerical integration to a solution with a specified accuracy. Tests are described in which the method is shown to significantly ameliorate the severity of the CFL constraint whilst retaining the simplicity of the underlying explicit method. Degrees of acceleration are achieved yielding comparable, or superior, efficiencies to a set of benchmark implicit schemes. We infer that the described method is a powerful tool, the explicit nature of which makes it ideally suited to the treatment of symmetric and non-symmetric diffusion operators describing complex financial instruments including multi-dimensional systems requiring representation on decomposed and/or adaptive meshes.

Suggested Citation

  • Stephen O'Sullivan & Conall O'Sullivan, 2011. "On the acceleration of explicit finite difference methods for option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1177-1191.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1177-1191 DOI: 10.1080/14697680903055570
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680903055570
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Ziogas & Carl Chiarella, 2004. "Pricing American Options on Jump-Diffusion Processes using Fourier-Hermite Series Expansions," Computing in Economics and Finance 2004 177, Society for Computational Economics.
    2. Jin-Chuan Duan & Jean-Guy Simonato, 1995. "Empirical Martingale Simulation for Asset Prices," CIRANO Working Papers 95s-43, CIRANO.
    3. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31 World Scientific Publishing Co. Pte. Ltd..
    4. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    5. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    6. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(03), pages 377-389, September.
    7. Jin‐Chuan Duan & Geneviève Gauthier & Caroline Sasseville & Jean‐Guy Simonato, 2003. "Approximating American option prices in the GARCH framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(10), pages 915-929, October.
    8. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, pages 1218-1233.
    9. Peter Ritchken & L. Sankarasubramanian & Anand M. Vijh, 1993. "The Valuation of Path Dependent Contracts on the Average," Management Science, INFORMS, pages 1202-1213.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1177-1191. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.