IDEAS home Printed from
   My bibliography  Save this article

Volatility forecasts and at-the-money implied volatility: a multi-component ARCH approach and its relation to market models


  • Gilles Zumbach


This article explores the relationships between several forecasts for the volatility built from multi-scale linear ARCH processes, and linear market models for the forward variance. This shows that the structures of the forecast equations are identical, but with different dependencies on the forecast horizon. The process equations for the forward variance are induced by the process equations for an ARCH model, but postulated in a market model. In the ARCH case, they are different from the usual diffusive type. The conceptual differences between both approaches and their implication for volatility forecasts are analysed. The volatility forecast is compared with the realized volatility (the volatility that will occur between date t and t + ΔT), and the implied volatility (corresponding to an at-the-money option with expiry at t + ΔT). For the ARCH forecasts, the parameters are set a priori. An empirical analysis across multiple time horizons ΔT shows that a forecast provided by an I-GARCH(1) process (one time scale) does not capture correctly the dynamics of the realized volatility. An I-GARCH(2) process (two time scales, similar to GARCH(1,1)) is better, while a long-memory LM-ARCH process (multiple time scales) replicates correctly the dynamics of the implied and realized volatilities and delivers consistently good forecasts for the realized volatility.

Suggested Citation

  • Gilles Zumbach, 2011. "Volatility forecasts and at-the-money implied volatility: a multi-component ARCH approach and its relation to market models," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 101-113.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:1:p:101-113
    DOI: 10.1080/14697681003785942

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:1:p:101-113. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.