IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A stochastic differential game for optimal investment of an insurer with regime switching

  • Robert Elliott
  • Tak Kuen Siu

We introduce a model to discuss an optimal investment problem of an insurance company using a game theoretic approach. The model is general enough to include economic risk, financial risk, insurance risk, and model risk. The insurance company invests its surplus in a bond and a stock index. The interest rate of the bond is stochastic and depends on the state of an economy described by a continuous-time, finite-state, Markov chain. The stock index dynamics are governed by a Markov, regime-switching, geometric Brownian motion modulated by the chain. The company receives premiums and pays aggregate claims. Here the aggregate insurance claims process is modeled by either a Markov, regime-switching, random measure or a Markov, regime-switching, diffusion process modulated by the chain. We adopt a robust approach to model risk, or uncertainty, and generate a family of probability measures using a general approach for a measure change to incorporate model risk. In particular, we adopt a Girsanov transform for the regime-switching Markov chain to incorporate model risk in modeling economic risk by the Markov chain. The goal of the insurance company is to select an optimal investment strategy so as to maximize either the expected exponential utility of terminal wealth or the survival probability of the company in the 'worst-case' scenario. We formulate the optimal investment problems as two-player, zero-sum, stochastic differential games between the insurance company and the market. Verification theorems for the HJB solutions to the optimal investment problems are provided and explicit solutions for optimal strategies are obtained in some particular cases.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

Volume (Year): 11 (2010)
Issue (Month): 3 ()
Pages: 365-380

in new window

Handle: RePEc:taf:quantf:v:11:y:2010:i:3:p:365-380
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2010:i:3:p:365-380. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.