IDEAS home Printed from
   My bibliography  Save this article

Approximation of aggregate and extremal losses within the very heavy tails framework


  • Ivan Mitov
  • Svetlozar Rachev
  • Frank Fabozzi


The loss distribution approach is one of the three advanced measurement approaches to the Pillar I modeling proposed by Basel II in 2001. In this paper, one possible approximation of the aggregate and maximum loss distribution in the extremely low frequency/high severity case is given, i.e. the case of infinite mean of the loss sizes and loss inter-arrival times. In this study, independent but not identically distributed losses are considered. The minimum loss amount is considered increasing over time. A Monte Carlo simulation algorithm is presented and several quantiles are estimated. The same approximation is used for modeling the maximum and aggregate worldwide economy losses caused by very rare and very extreme events such as 9/11, the Russian rouble crisis, and the U.S. subprime mortgage crisis. The model parameters are fit on a data sample of operational losses. The respective aggregate and extremal loss quantiles are calculated.

Suggested Citation

  • Ivan Mitov & Svetlozar Rachev & Frank Fabozzi, 2010. "Approximation of aggregate and extremal losses within the very heavy tails framework," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1153-1162.
  • Handle: RePEc:taf:quantf:v:10:y:2010:i:10:p:1153-1162 DOI: 10.1080/14697681003718414

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    4. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    5. Ernst Eberlein & Jean Jacod & Sebastian Raible, 2005. "Lévy term structure models: No-arbitrage and completeness," Finance and Stochastics, Springer, vol. 9(1), pages 67-88, January.
    6. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    7. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    8. Maria Siopacha & Josef Teichmann, 2007. "Weak and Strong Taylor methods for numerical solutions of stochastic differential equations," Papers 0704.0745,
    9. Marc Henrard, 2004. "Swaptions: 1 price, 10 deltas, and ... 6 1/2 gammas," Finance 0407018, EconWPA, revised 27 Sep 2005.
    10. Giovanni Di Masi & Tomas Björk & Wolfgang Runggaldier & Yuri Kabanov, 1997. "Towards a general theory of bond markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 141-174.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:10:y:2010:i:10:p:1153-1162. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.