IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v25y2019i6p523-559.html
   My bibliography  Save this article

Quantum-computing with AI & blockchain: modelling, fault tolerance and capacity scheduling

Author

Listed:
  • Wanyang Dai

Abstract

We model the hardware and software architecture for generalized Internet of Things (IoT) by quantum cloud-computing and blockchain. To reduce the measurement error and increase the efficiency of quantum entanglement (i.e. the capability of fault tolerance) in the current quantum computers and communications, we design a quantum-computing chip by modelling it as a multi-input multi-output (MIMO) quantum channel and obtain its channel capacity via our recently derived mutual information formula. To capture the internal qubit data flow dynamics of the channel, we model it via a deep convolutional neural network (DCNN) with generalized stochastic pooling in terms of resource-competition among different quantum eigenmodes or users. The pooling is corresponding to a resource allocation policy with two levels of competitions as in cognitive radio: the first one is on users’ selection in a ‘win–lose’ manner; the second one is on resourcesharing among selected users in a ‘win–win’ manner. To wit, our scheduling policy is the one by mixing a saddle point to a zero-sum game problem and a Pareto optimal Nash equilibrium point to a nonzero- sum game problem. The effectiveness of our policy is proved by diffusion modelling with theory and numerical examples.

Suggested Citation

  • Wanyang Dai, 2019. "Quantum-computing with AI & blockchain: modelling, fault tolerance and capacity scheduling," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 25(6), pages 523-559, November.
  • Handle: RePEc:taf:nmcmxx:v:25:y:2019:i:6:p:523-559
    DOI: 10.1080/13873954.2019.1677725
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2019.1677725
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2019.1677725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanyang Dai, 2022. "Optimal policy computing for blockchain based smart contracts via federated learning," Operational Research, Springer, vol. 22(5), pages 5817-5844, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:25:y:2019:i:6:p:523-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.