IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v54y2024i12p3476-3493.html
   My bibliography  Save this article

A multiple imputation method using population information

Author

Listed:
  • Tadayoshi Fushiki

Abstract

Multiple imputation (MI) is effectively used to deal with missing data when the missing mechanism is missing at random. However, MI may not be effective when the missing mechanism is not missing at random (NMAR). In such cases, additional information is required to obtain an appropriate imputation. Pham et al. (2019) proposed the calibrated-δ adjustment method, which is a multiple imputation method using population information. It provides appropriate imputation in two NMAR settings. However, the calibrated-δ adjustment method has two problems. First, it can be used only when one variable has missing values. Second, the theoretical properties of the variance estimator have not been provided. This article proposes a multiple imputation method using population information that can be applied when several variables have missing values. The proposed method is proven to include the calibrated-δ adjustment method. It is shown that the proposed method provides a consistent estimator for the parameter of the imputation model in an NMAR situation. The asymptotic variance of the estimator obtained by the proposed method and its estimator are also given.

Suggested Citation

  • Tadayoshi Fushiki, 2024. "A multiple imputation method using population information," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 54(12), pages 3476-3493, September.
  • Handle: RePEc:taf:lstaxx:v:54:y:2024:i:12:p:3476-3493
    DOI: 10.1080/03610926.2024.2395880
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2024.2395880
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2024.2395880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:54:y:2024:i:12:p:3476-3493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.