Author
Abstract
In this article, we consider the weighted least squares estimators (WLSEs) of the unknown parameters of a multiple sinusoidal model. Although, the least squares estimators (LSEs) are known to be the most efficient estimators in case of a multiple sinusoidal model, they are quite susceptible in presence of outliers. In presence of outliers, robust estimators like the least absolute deviation estimators (LADEs) or Huber’s M-estimators (HMEs) may be used. But implementation of the LADEs and HMEs are quite challenging in case of a sinusoidal model, the problem becomes more severe in case of multiple sinusoidal model. Moreover, to derive the theoretical properties of the robust estimators, one needs stronger assumptions on the error random variables than what are needed for the LSEs. The proposed WLSEs are used as robust estimators and they have the following two major advantages. First, they can be implemented very easily in case of multiple sinusoidal model, and their properties can be obtained under the same set of error assumptions as the LSEs. Extensive simulation results suggest that in presence of outliers, the WLSEs behave better than the LSEs, and at par with the LADEs and HEMs. It is observed that the performance of the WLSEs depend on the weight function, and we discuss how to choose a proper weight function for a given data set. We have analyzed one synthetic data set to show how the proposed methods can be implemented in practice.
Suggested Citation
Debasis Kundu, 2024.
"Weighted least squares: A robust method of estimation for sinusoidal model,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(16), pages 5935-5953, August.
Handle:
RePEc:taf:lstaxx:v:53:y:2024:i:16:p:5935-5953
DOI: 10.1080/03610926.2023.2238362
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:53:y:2024:i:16:p:5935-5953. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.