IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i18p4534-4555.html
   My bibliography  Save this article

Multivariate generalized Birnbaum—Saunders kernel density estimators

Author

Listed:
  • N. Zougab
  • L. Harfouche
  • Y. Ziane
  • S. Adjabi

Abstract

In this article, we first propose the classical multivariate generalized Birnbaum–Saunders kernel estimator for probability density function estimation in the context of multivariate non negative data. Then, we apply two multiplicative bias correction (MBC) techniques for multivariate kernel density estimator. Some properties (bias, variance, and mean integrated squared error) of the corresponding estimators are also investigated. Finally, the performances of the classical and MBC estimators based on family of generalized Birnbaum–Saunders kernels are illustrated by a simulation study.

Suggested Citation

  • N. Zougab & L. Harfouche & Y. Ziane & S. Adjabi, 2018. "Multivariate generalized Birnbaum—Saunders kernel density estimators," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(18), pages 4534-4555, September.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:18:p:4534-4555
    DOI: 10.1080/03610926.2017.1377252
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1377252
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1377252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    3. Célestin C. Kokonendji & Sobom M. Somé, 2021. "Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics," Stats, MDPI, vol. 4(1), pages 1-22, March.
    4. Kakizawa, Yoshihide, 2022. "Multivariate elliptical-based Birnbaum–Saunders kernel density estimation for nonnegative data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:18:p:4534-4555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.