IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i17p4254-4271.html
   My bibliography  Save this article

Bayesian and frequentist prediction limits for the Poisson distribution

Author

Listed:
  • Valbona Bejleri
  • Balgobin Nandram

Abstract

Prediction limits for Poisson distribution are useful in real life when predicting the occurrences of some phenomena, for example, the number of infections from a disease per year among school children, or the number of hospitalizations per year among patients with cardiovascular disease. In order to allocate the right resources and to estimate the associated cost, one would want to know the worst (i.e., an upper limit) and the best (i.e., the lower limit) scenarios. Under the Poisson distribution, we construct the optimal frequentist and Bayesian prediction limits, and assess frequentist properties of the Bayesian prediction limits. We show that Bayesian upper prediction limit derived from uniform prior distribution and Bayesian lower prediction limit derived from modified Jeffreys non informative prior coincide with their respective frequentist limits. This is not the case for the Bayesian lower prediction limit derived from a uniform prior and the Bayesian upper prediction limit derived from a modified Jeffreys prior distribution. Furthermore, it is shown that not all Bayesian prediction limits derived from a proper prior can be interpreted in a frequentist context. Using a counterexample, we state a sufficient condition and show that Bayesian prediction limits derived from proper priors satisfying our condition cannot be interpreted in a frequentist context. Analysis of simulated data and data on Atlantic tropical storm occurrences are presented.

Suggested Citation

  • Valbona Bejleri & Balgobin Nandram, 2018. "Bayesian and frequentist prediction limits for the Poisson distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(17), pages 4254-4271, September.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:17:p:4254-4271
    DOI: 10.1080/03610926.2017.1373814
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1373814
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1373814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2021. "A performance analysis of prediction intervals for count time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 603-625, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:17:p:4254-4271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.