IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i1p510-519.html
   My bibliography  Save this article

Large-sample variance of simulation using refined descriptive sampling: Case of independent variables

Author

Listed:
  • Leila Baiche
  • Megdouda Ourbih-Tari

Abstract

Derived from descriptive sampling (DS) as a better approach to Monte Carlo simulation, refined DS is a method of sampling that can be used to produce input values for estimation of expectations of functions of output variables. In this article, the asymptotic variance of such an estimate in case of independent input variables is obtained and it was shown that asymptotically, the variance is less than that obtained using simple random sampling.

Suggested Citation

  • Leila Baiche & Megdouda Ourbih-Tari, 2017. "Large-sample variance of simulation using refined descriptive sampling: Case of independent variables," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(1), pages 510-519, January.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:1:p:510-519
    DOI: 10.1080/03610926.2014.997362
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.997362
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.997362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oualid Saci & Megdouda Ourbih-Tari & Leila Baiche, 2023. "Maximum Likelihood Estimation of Parameters of a Random Variable Using Monte Carlo Methods," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 540-571, February.
    2. Tamiti Kenza & Ourbih-Tari Megdouda & Aloui Abdelouhab & Idjis Khelidja, 2018. "The use of variance reduction, relative error and bias in testing the performance of M/G/1 retrial queues estimators in Monte Carlo simulation," Monte Carlo Methods and Applications, De Gruyter, vol. 24(3), pages 165-178, September.
    3. Boubalou Meriem & Ourbih-Tari Megdouda & Aloui Abdelouhab & Zioui Arezki, 2019. "Comparing M/G/1 queue estimators in Monte Carlo simulation through the tested generator “getRDS” and the proposed “getLHS” using variance reduction," Monte Carlo Methods and Applications, De Gruyter, vol. 25(2), pages 177-186, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:1:p:510-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.