IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i10p4756-4773.html
   My bibliography  Save this article

Inference for Weibull distribution under adaptive Type-I progressive hybrid censored competing risks data

Author

Listed:
  • S. K. Ashour
  • M. Nassar

Abstract

In this paper, a competing risks model is considered under adaptive type-I progressive hybrid censoring scheme (AT-I PHCS). The lifetimes of the latent failure times have Weibull distributions with the same shape parameter. We investigate the maximum likelihood estimation of the parameters. Bayes estimates of the parameters are obtained based on squared error and LINEX loss functions under the assumption of independent gamma priors. We propose to apply Markov Chain Monte Carlo (MCMC) techniques to carry out a Bayesian estimation procedure and in turn calculate the credible intervals. To evaluate the performance of the estimators, a simulation study is carried out.

Suggested Citation

  • S. K. Ashour & M. Nassar, 2017. "Inference for Weibull distribution under adaptive Type-I progressive hybrid censored competing risks data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(10), pages 4756-4773, May.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:10:p:4756-4773
    DOI: 10.1080/03610926.2015.1083111
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2015.1083111
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2015.1083111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    2. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
    3. Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:10:p:4756-4773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.