IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i5p1370-1387.html
   My bibliography  Save this article

A model with long-term survivors: negative binomial Birnbaum-Saunders

Author

Listed:
  • Gauss M. Cordeiro
  • Vicente G. Cancho
  • Edwin M. M. Ortega
  • Gladys D. C. Barriga

Abstract

We propose a cure rate survival model by assuming that the number of competing causes of the event of interest follows the negative binomial distribution and the time to the event of interest has the Birnbaum-Saunders distribution. Further, the new model includes as special cases some well-known cure rate models published recently. We consider a frequentist analysis for parameter estimation of the negative binomial Birnbaum-Saunders model with cure rate. Then, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We illustrate the usefulness of the proposed model in the analysis of a real data set from the medical area.

Suggested Citation

  • Gauss M. Cordeiro & Vicente G. Cancho & Edwin M. M. Ortega & Gladys D. C. Barriga, 2016. "A model with long-term survivors: negative binomial Birnbaum-Saunders," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1370-1387, March.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:5:p:1370-1387
    DOI: 10.1080/03610926.2013.863929
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.863929
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.863929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiago G. Ramires & Niel Hens & Gauss M. Cordeiro & Edwin M. M. Ortega, 2018. "Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model," Computational Statistics, Springer, vol. 33(2), pages 709-730, June.
    2. Alex Mota & Eder A. Milani & Jeremias Leão & Pedro L. Ramos & Paulo H. Ferreira & Oilson G. Junior & Vera L. D. Tomazella & Francisco Louzada, 2023. "A new cure rate frailty regression model based on a weighted Lindley distribution applied to stomach cancer data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 883-909, September.
    3. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    4. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:5:p:1370-1387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.