IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i5p996-1012.html
   My bibliography  Save this article

Semiparametric Hierarchical Composite Quantile Regression

Author

Listed:
  • Yanliang Chen
  • Man-Lai Tang
  • Maozai Tian

Abstract

In biological, medical, and social sciences, multilevel structures are very common. Hierarchical models that take the dependencies among subjects within the same level are necessary. In this article, we introduce a semiparametric hierarchical composite quantile regression model for hierarchical data. This model (i) keeps the easy interpretability of the simple parametric model; (ii) retains some of the flexibility of the complex non parametric model; (iii) relaxes the assumptions that the noise variances and higher-order moments exist and are finite; and (iv) takes the dependencies among subjects within the same hierarchy into consideration. We establish the asymptotic properties of the proposed estimators. Our simulation results show that the proposed method is more efficient than the least-squares-based method for many non normally distributed errors. We illustrate our methodology with a real biometric data set.

Suggested Citation

  • Yanliang Chen & Man-Lai Tang & Maozai Tian, 2015. "Semiparametric Hierarchical Composite Quantile Regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(5), pages 996-1012, March.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:5:p:996-1012
    DOI: 10.1080/03610926.2012.755199
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.755199
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.755199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2016. "Estimation of linear composite quantile regression using EM algorithm," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 183-191.
    2. Feng, Xingdong & Liu, Qiaochu & Wang, Caixing, 2023. "A lack-of-fit test for quantile regression process models," Statistics & Probability Letters, Elsevier, vol. 192(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:5:p:996-1012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.