Author
Listed:
- Pablo Lerena
- Pertti Auerkari
- Christian Knaust
- Iris Vela
- Ulrich Krause
Abstract
Energy carriers -- either conventional or 'new' ones -- have to be provided in large amounts to meet the requirements of permanent availability and reliable supply of electricity. Depending on their state of aggregation, energy carriers are either stored in large masses (if solid or liquid) or at elevated pressures (if gaseous). Both impose the hazard of large-scale fire, in the latter case additionally the danger of explosion or unintended release. Very similar hazards occur for wastes. Solid wastes are present in large masses and only a small part is recycled. Most of the solid wastes are used in energy conversion. The main gaseous waste is CO 2 . During capturing also the hazard of unintended release exists. In this article, existing approaches for safe storage and fire prevention are discussed and a generic methodology is outlined. This methodology consists of the following steps: • gaining knowledge about the behaviour of the material stored (reactivity, thermal stability, etc.), • assessing the environmental conditions for the storage site (neighbourhood, safety distances, etc.), • assessment of prospective consequences of an incident and • development of individual loss prevention conceptions. All steps require both experimental testing and theoretical considerations about accident scenarios as integral parts of the methodology.
Suggested Citation
Pablo Lerena & Pertti Auerkari & Christian Knaust & Iris Vela & Ulrich Krause, 2013.
"Approaches towards a generic methodology for storage of hazardous energy carriers and waste products,"
Journal of Risk Research, Taylor & Francis Journals, vol. 16(3-4), pages 433-445, April.
Handle:
RePEc:taf:jriskr:v:16:y:2013:i:3-4:p:433-445
DOI: 10.1080/13669877.2012.729524
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jriskr:v:16:y:2013:i:3-4:p:433-445. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RJRR20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.