IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v41y2022i1p53-66.html
   My bibliography  Save this article

Volatility Estimation When the Zero-Process is Nonstationary

Author

Listed:
  • Christian Francq
  • Genaro Sucarrat

Abstract

Financial returns are frequently nonstationary due to the nonstationary distribution of zeros. In daily stock returns, for example, the nonstationarity can be due to an upwards trend in liquidity over time, which may lead to a downwards trend in the zero-probability. In intraday returns, the zero-probability may be periodic: It is lower in periods where the opening hours of the main financial centers overlap, and higher otherwise. A nonstationary zero-process invalidates standard estimators of volatility models, since they rely on the assumption that returns are strictly stationary. We propose a GARCH model that accommodates a nonstationary zero-process, derive a zero-adjusted QMLE for the parameters of the model, and prove its consistency and asymptotic normality under mild assumptions. The volatility specification in our model can contain higher order ARCH and GARCH terms, and past zero-indicators as covariates. Simulations verify the asymptotic properties in finite samples, and show that the standard estimator is biased. An empirical study of daily and intradaily returns illustrate our results. They show how a nonstationary zero-process induces time-varying parameters in the conditional variance representation, and that the distribution of zero returns can have a strong impact on volatility predictions.

Suggested Citation

  • Christian Francq & Genaro Sucarrat, 2022. "Volatility Estimation When the Zero-Process is Nonstationary," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 53-66, December.
  • Handle: RePEc:taf:jnlbes:v:41:y:2022:i:1:p:53-66
    DOI: 10.1080/07350015.2021.1999821
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2021.1999821
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2021.1999821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2022:i:1:p:53-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.