IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v38y2020i2p257-271.html
   My bibliography  Save this article

Flexible Mixture-Amount Models Using Multivariate Gaussian Processes

Author

Listed:
  • Aiste Ruseckaite
  • Dennis Fok
  • Peter Goos

Abstract

Many products and services can be described as mixtures of components whose proportions sum to one. Specialized models have been developed for relating the mixture component proportions to response variables, such as the preference, quality, and liking of products. If only the mixture component proportions affect the response variable, mixture models suffice to analyze the data. In case the total amount of the mixture also affects the response variable, mixture-amount models are needed. The current strategy for mixture-amount models is to express the response in terms of the mixture component proportions and subsequently specify the corresponding parameters as parametric functions of the amount. Specifying the functional form for these parameters may not be straightforward, and using a flexible functional form usually comes at the cost of a large number of parameters. In this article, we present a new modeling approach that is flexible, but parsimonious in the number of parameters. This new approach uses multivariate Gaussian processes and avoids the necessity to a priori specify the nature of the dependence of the mixture model parameters on the amount of the mixture. We show that this model encompasses two commonly used model specifications as extreme cases. We consider two applications and demonstrate that the new model outperforms standard models for mixture-amount data.

Suggested Citation

  • Aiste Ruseckaite & Dennis Fok & Peter Goos, 2020. "Flexible Mixture-Amount Models Using Multivariate Gaussian Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 257-271, April.
  • Handle: RePEc:taf:jnlbes:v:38:y:2020:i:2:p:257-271
    DOI: 10.1080/07350015.2018.1497506
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2018.1497506
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2018.1497506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:38:y:2020:i:2:p:257-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.