Author
Listed:
- Ryan Sun
- Zachary R. McCaw
- Xihong Lin
Abstract
Causal mediation, pleiotropy, and replication analyses are three highly popular genetic study designs. Although these analyses address different scientific questions, the underlying statistical inference problems all involve large-scale testing of composite null hypotheses. The goal is to determine whether all null hypotheses—as opposed to at least one—in a set of individual tests should simultaneously be rejected. Recently, various methods have been proposed for each of these situations, including an appealing two-group empirical Bayes approach that calculates local false discovery rates (lfdr). However, lfdr estimation is difficult due to the need for multivariate density estimation. Furthermore, the multiple testing rules for the empirical Bayes lfdr approach can disagree with conventional frequentist z-statistics, which is troubling for a field that ubiquitously uses summary statistics. This work proposes a framework to unify two-group testing in genetic association composite null settings, the conditionally symmetric multidimensional Gaussian mixture model (csmGmm). The csmGmm is shown to demonstrate more robust operating characteristics than recently-proposed alternatives. Crucially, the csmGmm also offers interpretability guarantees by harmonizing lfdr and z-statistic testing rules. We extend the base csmGmm to cover each of the mediation, pleiotropy, and replication settings, and we prove that the lfdr z-statistic agreement holds in each situation. We apply the model to a collection of translational lung cancer genetic association studies that motivated this work. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
Suggested Citation
Ryan Sun & Zachary R. McCaw & Xihong Lin, 2025.
"Testing a Large Number of Composite Null Hypotheses Using Conditionally Symmetric Multidimensional Gaussian Mixtures in Genome-Wide Studies,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 120(550), pages 605-617, April.
Handle:
RePEc:taf:jnlasa:v:120:y:2025:i:550:p:605-617
DOI: 10.1080/01621459.2024.2422124
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:120:y:2025:i:550:p:605-617. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.