Author
Listed:
- Seong-ho Lee
- Yanyuan Ma
- Jiwei Zhao
Abstract
In studies ranging from clinical medicine to policy research, complete data are usually available from a population P, but the quantity of interest is often sought for a related but different population Q which only has partial data. We consider the setting when both outcome Y and covariate X are available from P but only X is available from Q, under the label shift assumption; that is, the conditional distribution of X given Y is the same in the two populations. To estimate the parameter of interest in Q by leveraging information from P, three ingredients are essential: (a) the common conditional distribution of X given Y, (b) the regression model of Y given X in P, and (c) the density ratio of the outcome Y between the two populations. We propose an estimation procedure that only needs some standard nonparametric technique to approximate the conditional expectations with respect to (a), while by no means needs an estimate or model for (b) or (c); that is, doubly flexible to the model misspecifications of both (b) and (c). This is conceptually different from the well-known doubly robust estimation in that, double robustness allows at most one model to be misspecified whereas our proposal can allow both (b) and (c) to be misspecified. This is of particular interest in label shift because estimating (c) is difficult, if not impossible, by virtue of the absence of the Y-data from Q. While estimating (b) is occasionally off-the-shelf, it may encounter issues related to the curse of dimensionality or computational challenges. We develop the large sample theory for the proposed estimator, and examine its finite-sample performance through simulation studies as well as an application to the MIMIC-III database. Supplementary materials for this article are available online including a standardized description of the materials available for reproducing the work.
Suggested Citation
Seong-ho Lee & Yanyuan Ma & Jiwei Zhao, 2025.
"Doubly Flexible Estimation under Label Shift,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 120(549), pages 278-290, January.
Handle:
RePEc:taf:jnlasa:v:120:y:2025:i:549:p:278-290
DOI: 10.1080/01621459.2024.2321653
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:120:y:2025:i:549:p:278-290. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.