IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v119y2024i547p2305-2316.html
   My bibliography  Save this article

HAC Covariance Matrix Estimation in Quantile Regression

Author

Listed:
  • Antonio F. Galvao
  • Jungmo Yoon

Abstract

This study considers an estimator for the asymptotic variance-covariance matrix in time-series quantile regression models which is robust to the presence of heteroscedasticity and autocorrelation. When regression errors are serially correlated, the conventional quantile regression standard errors are invalid. The proposed solution is a quantile analogue of the Newey-West robust standard errors. We establish the asymptotic properties of the heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimator and provide an optimal bandwidth selection rule. The quantile sample autocorrelation coefficient is biased toward zero in finite sample which adversely affects the optimal bandwidth estimation. We propose a simple alternative estimator that effectively reduces the finite sample bias. Numerical simulations provide evidence that the proposed HAC covariance matrix estimator significantly improves the size distortion problem. To illustrate the usefulness of the proposed robust standard error, we examine the impacts of the expansion of renewable energy resources on electricity prices. Supplementary materials for this article are available online.

Suggested Citation

  • Antonio F. Galvao & Jungmo Yoon, 2024. "HAC Covariance Matrix Estimation in Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(547), pages 2305-2316, July.
  • Handle: RePEc:taf:jnlasa:v:119:y:2024:i:547:p:2305-2316
    DOI: 10.1080/01621459.2023.2257365
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2023.2257365
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2023.2257365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:547:p:2305-2316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.