Author
Listed:
- Stéphane Guerrier
- Christoph Kuzmics
- Maria-Pia Victoria-Feser
Abstract
Countries officially record the number of COVID-19 cases based on medical tests of a subset of the population. These case count data obviously suffer from participation bias, and for prevalence estimation, these data are typically discarded in favor of infection surveys, or possibly also completed with auxiliary information. One exception is the series of infection surveys recorded by the Statistics Austria Federal Institute to study the prevalence of COVID-19 in Austria in April, May, and November 2020. In these infection surveys, participants were additionally asked if they were simultaneously recorded as COVID-19 positive in the case count data. In this article, we analyze the benefits of properly combining the outcomes from the infection survey with the case count data, to analyze the prevalence of COVID-19 in Austria in 2020, from which the case ascertainment rate can be deduced. The results show that our approach leads to a significant efficiency gain. Indeed, considerably smaller infection survey samples suffice to obtain the same level of estimation accuracy. Our estimation method can also handle measurement errors due to the sensitivity and specificity of medical testing devices and to the nonrandom sample weighting scheme of the infection survey. The proposed estimators and associated confidence intervals are implemented in the companion open source R package pempi available on the Comprehensive R Archive Network (CRAN). Supplementary materials for this article are available online including a standardized description of the materials available for reproducing the work.
Suggested Citation
Stéphane Guerrier & Christoph Kuzmics & Maria-Pia Victoria-Feser, 2024.
"Assessing COVID-19 Prevalence in Austria with Infection Surveys and Case Count Data as Auxiliary Information,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(547), pages 1722-1735, July.
Handle:
RePEc:taf:jnlasa:v:119:y:2024:i:547:p:1722-1735
DOI: 10.1080/01621459.2024.2313790
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:547:p:1722-1735. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.