Author
Listed:
- Bingyuan Liu
- Qi Zhang
- Lingzhou Xue
- Peter X.-K. Song
- Jian Kang
Abstract
It is important to develop statistical techniques to analyze high-dimensional data in the presence of both complex dependence and possible heavy tails and outliers in real-world applications such as imaging data analyses. We propose a new robust high-dimensional regression with coefficient thresholding, in which an efficient nonconvex estimation procedure is proposed through a thresholding function and the robust Huber loss. The proposed regularization method accounts for complex dependence structures in predictors and is robust against heavy tails and outliers in outcomes. Theoretically, we rigorously analyze the landscape of the population and empirical risk functions for the proposed method. The fine landscape enables us to establish both statistical consistency and computational convergence under the high-dimensional setting. We also present an extension to incorporate spatial information into the proposed method. Finite-sample properties of the proposed methods are examined by extensive simulation studies. An application concerns a scalar-on-image regression analysis for an association of psychiatric disorder measured by the general factor of psychopathology with features extracted from the task functional MRI data in the Adolescent Brain Cognitive Development (ABCD) study. Supplementary materials for this article are available online.
Suggested Citation
Bingyuan Liu & Qi Zhang & Lingzhou Xue & Peter X.-K. Song & Jian Kang, 2024.
"Robust High-Dimensional Regression with Coefficient Thresholding and Its Application to Imaging Data Analysis,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 715-729, January.
Handle:
RePEc:taf:jnlasa:v:119:y:2024:i:545:p:715-729
DOI: 10.1080/01621459.2022.2142590
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:715-729. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.